Editorial
5 diciembre 2019

Pensando en Movimiento

Roy La Touche
Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, España. Grupo de Investigación Motion in Brains, Instituto de Neurociencia y Ciencias del Movimiento (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, España. Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), Madrid, España
Vol. 1 Núm. 1 (2019): Diciembre

  Métricas

Resumen

Una similitud que existe entre todas las profesiones relacionadas con las ciencias aplicadas a la rehabilitación es la utilización de terapias basadas en el movimiento, estas producen mejoras cognitivas, sensoriales, motoras (La Touche, 2019) y además presentan una gran repercusión sobre el estado de ánimo del paciente (Gourgouvelis et al., 2017). Dentro de las terapias basadas en el movimiento, el ejercicio y su variante específica aplicada a la rehabilitación (ejercicio terapéutico) es la que tiene una gran aplicabilidad clínica, presenta un soporte sólido de la evidencia científica y se prescribe con mayor frecuencia para el tratamiento de trastornos musculoesqueléticos, neurológicos y cardiorrespiratorios (La Touche, 2017). La prescripción de ejercicio terapéutico es un proceso sistemático en el cual se establece un planteamiento terapéutico basado en pruebas físicas y diseñado con el objetivo de recuperar, mejorar, prevenir y optimizar las funciones físicas mediante la utilización de ejercicios con un énfasis rehabilitador (La Touche, 2017).

  Cómo citar

1.
Roy La Touche. Pensando en Movimiento. MOVE [Internet]. 5 de diciembre de 2019 [citado 19 de mayo de 2024];1(1):1-4. Disponible en: https://publicaciones.lasallecampus.es/index.php/MOVE/article/view/13
  

  Referencias

Buccino G. Action observation treatment: a novel tool in neurorehabilitation. Philos Trans R Soc B Biol Sci. 2014;369(1644):20130185–20130185 DOI: http://dx.doi.org/10.1098/rstb.2013.0185. DOI: https://doi.org/10.1098/rstb.2013.0185

Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996;77(1–2):45–52 DOI: http://dx.doi.org/10.1016/0166-4328(95)00225-1. DOI: https://doi.org/10.1016/0166-4328(95)00225-1

Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: Interactions between exercise,depression, and BDNF. The Neuroscientist. 2012;18(1):82–97 DOI: http://dx.doi.org/10.1177/1073858410397054. DOI: https://doi.org/10.1177/1073858410397054

Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM. Resistance training induces supraspinal adaptations: Evidence from movement-related cortical potentials. Eur J ApplPhysiol. 2010;109(5):923–33 DOI: http://dx.doi.org/10.1007/s00421-010-1432-8. DOI: https://doi.org/10.1007/s00421-010-1432-8

Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49 DOI: http://dx.doi.org/10.2165/00007256-200636020-00004. DOI: https://doi.org/10.2165/00007256-200636020-00004

Gourgouvelis J, Yielder P, Murphy B. Exercise Promotes Neuroplasticity in Both Healthy and Depressed Brains: An fMRI Pilot Study. Neural Plast. 2017;2017 DOI: http://dx.doi.org/10.1155/2017/8305287. DOI: https://doi.org/10.1155/2017/8305287

Heyman E, GamelinF-X, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, Meeusen R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology. 2012;37(6):844–51 DOI:http://dx.doi.org/10.1016/j.psyneuen.2011.09.017. DOI: https://doi.org/10.1016/j.psyneuen.2011.09.017

Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience. 2008;9(1):58–65 DOI: http://dx.doi.org/10.1038/nrn2298. DOI: https://doi.org/10.1038/nrn2298

Kidgell DJ, Bonanno DR, Frazer AK, Howatson G, Pearce AJ. Corticospinal responses following strength training: a systematic review and meta-analysis. European Journal of Neuroscience. 2017;46(11):2648–61 DOI: http://dx.doi.org/10.1111/ejn.13710. DOI: https://doi.org/10.1111/ejn.13710

La Touche R. Rehabilitación de tercera generación. NeuroRehab News. 2017;2(1):e0019.

La Touche R. El movimiento como eje fundamental de la rehabilitación. NeuroRehab News. 2019;3(1):e0033.

Lee MC, Byun K, Kim JS, Lee H, Kim K. Trends in exercise neuroscience: Raising demand for brain fitness.Journal of Exercise Rehabilitation. 2019;15(2):176–9 DOI: http://dx.doi.org/10.12965/jer.1938046.023. DOI: https://doi.org/10.12965/jer.1938046.023

Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, Birbaumer N, Grodd W. Activation of Cortical and Cerebellar Motor Areasduring Executed and Imagined Hand Movements: An fMRI Study. J Cogn Neurosci1999;11(5):491–501 DOI: http://dx.doi.org/10.1162/089892999563553. DOI: https://doi.org/10.1162/089892999563553

Lourenco M V., Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, Gonçalves RA, Clarke JR, Beckman D,Staniszewski A, Berman H, Guerra LA, Forny-Germano L, Meier S, Wilcock DM, de Souza JM, Alves-Leon S, Prado VF, Prado MAM, Abisambra JF, Tovar-Moll F, Mattos P, Arancio O, Ferreira ST, De Felice FG. Exercise-linked FNDC5/irisin rescues synaptic plasticityand memory defects in Alzheimer’s models. Nat Med. Nature Publishing Group; 2019;25(1):165–75 DOI: http://dx.doi.org/10.1038/s41591-018-0275-4. DOI: https://doi.org/10.1038/s41591-018-0275-4

Paillard T, Rolland Y, de Barreto PS. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: A narrative review. Vol. 11, Journal of Clinical Neurology (Korea). Korean Neurological Association; 2015. p. 212–9 DOI: http://dx.doi.org/10.3988/jcn.2015.11.3.212. DOI: https://doi.org/10.3988/jcn.2015.11.3.212

Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and Dose–Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis. Sport Med. 2018;48(5):1165–87 DOI: http://dx.doi.org/10.1007/s40279-018-0874-8. DOI: https://doi.org/10.1007/s40279-018-0874-8

Ploughman M, Attwood Z, White N, Doré JJE, Corbett D. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci. 2007;25(11):3453–60 DOI: http://dx.doi.org/10.1111/j.1460-9568.2007.05591.x. DOI: https://doi.org/10.1111/j.1460-9568.2007.05591.x

Rogge AK, Röder B, Zech A, Hötting K. Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage. Academic Press Inc.; 2018;179:471–9 DOI: http://dx.doi.org/10.1016/j.neuroimage.2018.06.065. DOI: https://doi.org/10.1016/j.neuroimage.2018.06.065

Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A Single Bout of Exercise Improves Motor Memory. PLoS One. 2012;7(9) DOI: http://dx.doi.org/10.1371/journal.pone.0044594. DOI: https://doi.org/10.1371/journal.pone.0044594

Romano Smith S, Wood G, Coyles G, Roberts JW, Wakefield CJ. The effect of action observation and motor imagery combinations on upper limb kinematics and EMG during dart-throwing. Scand J Med Sci Sport. 2019;00:1-13DOI: http://dx.doi.org/10.1111/sms.13534. DOI: https://doi.org/10.1111/sms.13534

Russell E. Exercise is medicine. Canadian Medical Association journal 2013;185(11), E526DOI: http://dx.doi.org/10.1503/cmaj.109-4501. DOI: https://doi.org/10.1503/cmaj.109-4501

Salfi F, Tempesta D, De Gennaro L, Ferrara M. Cued Memory Reactivation during Motor Imagery Practice Influences Early Improvement of Procedural Skill Learning. Neuroscience. 2019;418:244–53 DOI: http://dx.doi.org/10.1016/j.neuroscience.2019.08.047. DOI: https://doi.org/10.1016/j.neuroscience.2019.08.047

Sallis RE. Exercise is medicine: A call to action for physicians to assess and prescribe exercise. Phys Sportsmed. 2015;43(1):22–6 DOI: http://dx.doi.org/10.1080/00913847.2015.1001938. DOI: https://doi.org/10.1080/00913847.2015.1001938

Sallis RE. Exercise is medicine and physicians need to prescribe it! British J of Sports Med. 2009;43(1), 3-4 DOI: http://dx.doi.org/10.1136/bjsm.2008.054825. DOI: https://doi.org/10.1136/bjsm.2008.054825

Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One. 2015;10(10) DOI: http://dx.doi.org/10.1371/journal.pone.0141393. DOI: https://doi.org/10.1371/journal.pone.0141393

Sun L, Sun Q, Qi J. Adult hippocampal neurogenesis: An important target associated with antidepressant effects of exercise. Rev Neurosci. 2017;28(7):693–703 DOI: http://dx.doi.org/10.1515/revneuro-2016-0076. DOI: https://doi.org/10.1515/revneuro-2016-0076

Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Vol. 60, Journal of Psychiatric Research. Elsevier Ltd; 2015. p. 56–64 DOI: http://dx.doi.org/10.1016/j.jpsychires.2014.10.003. DOI: https://doi.org/10.1016/j.jpsychires.2014.10.003

Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008;60:101–16 DOI: http://dx.doi.org/10.1111/j.1748-1716.2008.01850.x. DOI: https://doi.org/10.1111/j.1748-1716.2008.01850.x

Thieme H, Morkisch N, Rietz C, Dohle C, Borgetto B. The efficacy of movement representation techniques for treatment of limb pain -A systematic review andmeta-analysis. Jof Pain. 2016;193(2):167–80 DOI: http://dx.doi.org/10.1016/j.jpain.2015.10.015. DOI: https://doi.org/10.1016/j.jpain.2015.10.015

Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90 DOI: http://dx.doi.org/10.1111/j.1460-9568.2004.03720.x. DOI: https://doi.org/10.1111/j.1460-9568.2004.03720.x

Wright DJ, Williams J, Holmes PS. Combined action observation and imagery facilitates corticospinal excitability. Front Hum Neurosci. 2014;8:951 DOI: http://dx.doi.org/10.3389/fnhum.2014.00951. DOI: https://doi.org/10.3389/fnhum.2014.00951

Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu F Sen, Wu CW, Kuo YM. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun. 2011;25(1):135–46 DOI: http://dx.doi.org/10.1016/j.bbi.2010.09.006. DOI: https://doi.org/10.1016/j.bbi.2010.09.006

Yap BW Da, Lim ECW. The Effects of Motor Imagery on Pain and Range of Motion in Musculoskeletal Disorders. Clin J Pain. 2019;35(1):87–99 DOI: http://dx.doi.org/10.1097/AJP.0000000000000648. DOI: https://doi.org/10.1097/AJP.0000000000000648

Yoxon E, Welsh TN. Rapid motor cortical plasticity can be induced by motor imagery training. Neuropsychologia. 2019;134 DOI: http://dx.doi.org/10.1016/j.neuropsychologia.2019.107206. DOI: https://doi.org/10.1016/j.neuropsychologia.2019.107206