Investigación básica en ejercicio
30 julio 2025

Efecto de la apnea-caminando a diferentes intensidades de esfuerzo percibido sobre la hipoalgesia en sujetos sanos

Francisco de Asís Fernández
Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
Contención de la respiraciónHipoventilaciónEjercicioDolor
Vol. 7 Núm. 1 (2025): Junio

  Métricas

Resumen

Objetivos: Se realizó un ensayo controlado aleatorizado, en sujetos sanos, para analizar los efectos hipoalgésicos de una intervención de apnea realizada a diferentes intensidades de esfuerzo percibido.

Métodos: Se reclutaron y aleatorizaron 38 participantes. Los participantes del grupo de apnea (AG) realizaron un protocolo de apneas intermitentes a bajo volumen pulmonar en un tapiz rodante, mientras que los del grupo control  realizaron un ejercicio aeróbico. Ambos grupos realizaron tres bloques de intervención consecutivos a intensidades crecientes: ligera (Borg CR10: 2-3), moderada (Borg CR10: 5-6) y vigorosa (Borg CR10: 7-8). Se analizaron los cambios en los umbrales de dolor a la presión (PPT) entre los grupos y después de cada bloque de esfuerzo percibido.

Resultados: El modelo ANCOVA no demostró diferencias significativas en los cambios de los PPTs entre los grupos en las diferentes intensidades, excepto en la intensidad ligera (DM = 0,61, SE = 0,23, IC 95% [0,17, 1,11], Z = 2,63, P = 0,0086).  El ANOVA de medidas repetidas reveló un efecto significativo de la intensidad del ejercicio sobre los PPT en el AG para el pulgar (F(3, 111) = 2,7644, p = 0,04532), C7 (F(3, 111) = 10,397, p < 0,0001) y tibial (F(3, 111) = 7,3664, p = 0,0002).

Conclusiones: No hubo diferencias en los PPT entre las intervenciones de apnea y control en ninguno de los estadios de esfuerzo percibido, excepto en la zona del pulgar a intensidad leve. Los resultados mostraron que los cambios en los PPT se incrementaron de forma directamente proporcional a la intensidad percibida en AG, mostrando una hipoalgesia similar, con un menor requerimiento de carga externa.

Palabras clave: contención de la respiración; hipoventilación; ejercicio; dolor.

  Cómo citar

1.
Mendoza-Arranz C, Fernández F de A, Reina-Varona Álvaro, González-Iglesias M, Medina-Olmos L, Fierro-Marrero J. Efecto de la apnea-caminando a diferentes intensidades de esfuerzo percibido sobre la hipoalgesia en sujetos sanos. MOVE [Internet]. 30 de julio de 2025 [citado 13 de noviembre de 2025];7(1):694-706. Disponible en: https://publicaciones.lasallecampus.es/index.php/MOVE/article/view/1589
  

  Referencias

Allen, L., Scott, J., Brand, A., Hlava, M., & Altman, M. (2014). Publishing: Credit where credit is due. Nature, 508(7496), 312-313. https://doi.org/10.1038/508312a

Amiri, M., Alavinia, M., Singh, M., & Kumbhare, D. (2021). Pressure Pain Threshold in Patients With Chronic Pain: A Systematic Review and Meta-Analysis. American Journal of Physical Medicine & Rehabilitation, 100(7), 656. https://doi.org/10.1097/PHM.0000000000001603

Årnes, A. P., Nielsen, C. S., Stubhaug, A., Fjeld, M. K., Johansen, A., Morseth, B., Strand, B. H., Wilsgaard, T., & Steingrímsdóttir, Ó. A. (2023). Longitudinal relationships between habitual physical activity and pain tolerance in the general population. PLOS ONE, 18(5), e0285041. https://doi.org/10.1371/journal.pone.0285041

Bull, F. C., Maslin, T. S., & Armstrong, T. (2009). Global Physical Activity Questionnaire (GPAQ): Nine Country Reliability and Validity Study. Journal of Physical Activity and Health, 6(6), 790-804. https://doi.org/10.1123/jpah.6.6.790

Butcher, N. J., Monsour, A., Mew, E. J., Chan, A.-W., Moher, D., Mayo-Wilson, E., Terwee, C. B., Chee-A-Tow, A., Baba, A., Gavin, F., Grimshaw, J. M., Kelly, L. E., Saeed, L., Thabane, L., Askie, L., Smith, M., Farid-Kapadia, M., Williamson, P. R., Szatmari, P., … Offringa, M. (2022). Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA, 328(22), 2252-2264. https://doi.org/10.1001/jama.2022.21022

Chesterton, L. S., Barlas, P., Foster, N. E., Baxter, D. G., & Wright, C. C. (2003). Gender differences in pressure pain threshold in healthy humans. Pain, 101(3), 259-266. https://doi.org/10.1016/S0304-3959(02)00330-5

Chesterton, L. S., Sim, J., Wright, C. C., & Foster, N. E. (2007). Interrater Reliability of Algometry in Measuring Pressure Pain Thresholds in Healthy Humans, Using Multiple Raters. The Clinical Journal of Pain, 23(9), 760-766. https://doi.org/10.1097/AJP.0b013e318154b6ae

De Asís-Fernández, F., Sereno, D., Turner, A. P., González-Mohíno, F., & González-Ravé, J. M. (2022). Effects of apnoea training on aerobic and anaerobic performance: A systematic review and meta-analysis. Frontiers in Physiology, 13. https://www.frontiersin.org/articles/10.3389/fphys.2022.964144

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593

Fischer, A. A. (1987). Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain, 30(1), 115-126. https://doi.org/10.1016/0304-3959(87)90089-3

Hackett, J., Naugle, K. E., & Naugle, K. M. (2020). The Decline of Endogenous Pain Modulation With Aging: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation. The Journal of Pain, 21(5-6), 514-528. https://doi.org/10.1016/j.jpain.2019.09.005

Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis | SpringerLink. https://link.springer.com/book/10.1007/978-3-319-19425-7

Hita-Contreras, F., Martínez-López, E., Latorre-Román, P. A., Garrido, F., Santos, M. A., & Martínez-Amat, A. (2014). Reliability and validity of the Spanish version of the Pittsburgh Sleep Quality Index (PSQI) in patients with fibromyalgia. Rheumatology International, 34(7), 929-936. https://doi.org/10.1007/s00296-014-2960-z

Hughes, L., & Patterson, S. D. (2020). The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. Journal of Applied Physiology, 128(4), 914-924. https://doi.org/10.1152/japplphysiol.00768.2019

Jeffries, O., Patterson, S. D., & Waldron, M. (2019). The effect of severe and moderate hypoxia on exercise at a fixed level of perceived exertion. European Journal of Applied Physiology, 119(5), 1213-1224. https://doi.org/10.1007/s00421-019-04111-y

Joshi, S., Mahoney, S., Jahan, J., Pitts, L., Hackney, K. J., & Jarajapu, Y. P. (2020). Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults. Journal of Applied Physiology, 128(5), 1423-1431. https://doi.org/10.1152/japplphysiol.00109.2020

Karanasios, S., Sozeri, A., Koumantakis, G. A., & Gioftsos, G. (2022). Exercised-Induced Hypoalgesia following An Elbow Flexion Low-Load Resistance Exercise with Blood Flow Restriction: A Sham-Controlled Randomized Trial in Healthy Adults. Healthcare, 10(12), 2557. https://doi.org/10.3390/healthcare10122557

Koltyn, K. F. (2002). Exercise-Induced Hypoalgesia and Intensity of Exercise. Sports Medicine, 32(8), 477-487. https://doi.org/10.2165/00007256-200232080-00001

Lahiri, S., Mokashi, A., Mulligan, E., & Nishino, T. (1981). Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. Journal of Applied Physiology, 51(1), 55-61. https://doi.org/10.1152/jappl.1981.51.1.55

Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and Statistical Psychology, 65(2), 350-370. https://doi.org/10.1111/j.2044-8317.2011.02029.

Leźnicka, K., Pawlak, M., Gasiorowska, A., Jażdżewska, A., Wilczyńska, D., Godlewska, P., Lubkowska, A., Chudecka, M., Maciejewska-Skrendo, A., Santos-Rocha, R., & Szumilewicz, A. (2022). Individual Characteristics and Pain Sensitivity during Pregnancy-A Cross-Sectional Study in Pregnant and Non-Pregnant Women. International Journal of Environmental Research and Public Health, 19(21), 14151. https://doi.org/10.3390/ijerph192114151

Mendoza-Arranz, C., López-Rebenaque, O., Cabrera-López, C. D., López-Mejías, A., Fierro-Marrero, J., & DeAsís-Fernández, F. (2024). Effects of Apnea-Induced Hypoxia on Hypoalgesia in Healthy Subjects. Sports, 12(11), 294. https://doi.org/10.3390/sports12110294

Pinheiro, J., Bates, D., & R Core Team. (1999). nlme: Linear and Nonlinear Mixed Effects Models (p. 3.1-165) [Dataset]. https://doi.org/10.32614/CRAN.package.nlme

Pinheiro, J. C., & Bates, D. M. (2013). Mixed-Effects Models in S and S-PLUS | SpringerLink. Recuperado 25 de junio de 2024, de https://link.springer.com/book/10.1007/b98882

Remor, E. (2006). Psychometric Properties of a European Spanish Version of the Perceived Stress Scale (PSS). The Spanish Journal of Psychology, 9(1), 86-93. https://doi.org/10.1017/S1138741600006004

Reyes del Paso, G. A., Muñoz Ladrón de Guevara, C., & Montoro, C. I. (2015). Breath-Holding During Exhalation as a Simple Manipulation to Reduce Pain Perception. Pain Medicine (Malden, Mass.), 16(9), 1835-1841. https://doi.org/10.1111/pme.12764

Shariat, A., Cleland, J. A., Danaee, M., Alizadeh, R., Sangelaji, B., Kargarfard, M., Ansari, N. N., Sepehr, F. H., & Tamrin, S. B. M. (2018). Borg CR-10 scale as a new approach to monitoring office exercise training. Work, 60(4), 549-554. https://doi.org/10.3233/WOR-182762

Sierra-Silvestre, E., Somerville, M., Bisset, L., & Coppieters, M. W. (2020). Altered pain processing in patients with type 1 and 2 diabetes: Systematic review and meta-analysis of pain detection thresholds and pain modulation mechanisms. BMJ Open Diabetes Research & Care, 8(1), e001566. https://doi.org/10.1136/bmjdrc-2020-001566

Staffe, A. T., Bech, M. W., Clemmensen, S. L. K., Nielsen, H. T., Larsen, D. B., & Petersen, K. K. (2019). Total sleep deprivation increases pain sensitivity, impairs conditioned pain modulation and facilitates temporal summation of pain in healthy participants. PloS One, 14(12), e0225849. https://doi.org/10.1371/journal.pone.0225849

Thompson, T., Oram, C., Correll, C. U., Tsermentseli, S., & Stubbs, B. (2017). Analgesic Effects of Alcohol: A Systematic Review and Meta-Analysis of Controlled Experimental Studies in Healthy Participants. The Journal of Pain, 18(5), 499-510. https://doi.org/10.1016/j.jpain.2016.11.009

Timmers, I., Kaas, A. L., Quaedflieg, C. W. E. M., Biggs, E. E., Smeets, T., & de Jong, J. R. (2018). Fear of pain and cortisol reactivity predict the strength of stress-induced hypoalgesia. European Journal of Pain (London, England), 22(7), 1291-1303. https://doi.org/10.1002/ejp.1217

Woorons, X. (2010). Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: Role of hypoxia and hypercapnia. Eur J Appl Physiol, 110(2), 367-377. https://doi.org/10.1007/s00421-010-1512-9 [doi]

Woorons, X., Bourdillon, N., Vandewalle, H., Lamberto, C., Mollard, P., Richalet, J.-P., & Pichon, A. (2010). Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: Role of hypoxia and hypercapnia. European Journal of Applied Physiology, 110(2), 367-377. https://doi.org/10.1007/s00421-010-1512-9

Woorons, X., Dupuy, O., Mucci, P., Millet, G. P., & Pichon, A. (2019). Cerebral and Muscle Oxygenation during Repeated Shuttle Run Sprints with Hypoventilation. International Journal of Sports Medicine, 40(06), 376-384. https://doi.org/10.1055/a-0836-9011

Woorons, X., Mollard, P., Pichon, A., Duvallet, A., Richalet, J.-P., & Lamberto, C. (2007). Prolonged expiration down to residual volume leads to severe arterial hypoxemia in athletes during submaximal exercise. Respiratory Physiology & Neurobiology, 158(1), 75-82. https://doi.org/10.1016/j.resp.2007.02.017

Wright, D. B., London, K., & Field, A. P. (2011). Using Bootstrap Estimation and the Plug-in Principle for Clinical Psychology Data. Journal of Experimental Psychopathology, 2(2), 252-270. https://doi.org/10.5127/jep.013611

Zheng, K., Chen, C., Yang, S., & Wang, X. (2021). Aerobic Exercise Attenuates Pain Sensitivity: An Event-Related Potential Study. Frontiers in Neuroscience, 15, 735470. https://doi.org/10.3389/fnins.2021.735470