Efecto de la apnea-caminando a diferentes intensidades de esfuerzo percibido sobre la hipoalgesia en sujetos sanos
Resumen
Objetivos: Se realizó un ensayo controlado aleatorizado, en sujetos sanos, para analizar los efectos hipoalgésicos de una intervención de apnea realizada a diferentes intensidades de esfuerzo percibido.
Métodos: Se reclutaron y aleatorizaron 38 participantes. Los participantes del grupo de apnea (AG) realizaron un protocolo de apneas intermitentes a bajo volumen pulmonar en un tapiz rodante, mientras que los del grupo control realizaron un ejercicio aeróbico. Ambos grupos realizaron tres bloques de intervención consecutivos a intensidades crecientes: ligera (Borg CR10: 2-3), moderada (Borg CR10: 5-6) y vigorosa (Borg CR10: 7-8). Se analizaron los cambios en los umbrales de dolor a la presión (PPT) entre los grupos y después de cada bloque de esfuerzo percibido.
Resultados: El modelo ANCOVA no demostró diferencias significativas en los cambios de los PPTs entre los grupos en las diferentes intensidades, excepto en la intensidad ligera (DM = 0,61, SE = 0,23, IC 95% [0,17, 1,11], Z = 2,63, P = 0,0086). El ANOVA de medidas repetidas reveló un efecto significativo de la intensidad del ejercicio sobre los PPT en el AG para el pulgar (F(3, 111) = 2,7644, p = 0,04532), C7 (F(3, 111) = 10,397, p < 0,0001) y tibial (F(3, 111) = 7,3664, p = 0,0002).
Conclusiones: No hubo diferencias en los PPT entre las intervenciones de apnea y control en ninguno de los estadios de esfuerzo percibido, excepto en la zona del pulgar a intensidad leve. Los resultados mostraron que los cambios en los PPT se incrementaron de forma directamente proporcional a la intensidad percibida en AG, mostrando una hipoalgesia similar, con un menor requerimiento de carga externa.
Palabras clave: contención de la respiración; hipoventilación; ejercicio; dolor.
Cómo citar
Referencias
Allen, L., Scott, J., Brand, A., Hlava, M., & Altman, M. (2014). Publishing: Credit where credit is due. Nature, 508(7496), 312-313. https://doi.org/10.1038/508312a
Amiri, M., Alavinia, M., Singh, M., & Kumbhare, D. (2021). Pressure Pain Threshold in Patients With Chronic Pain: A Systematic Review and Meta-Analysis. American Journal of Physical Medicine & Rehabilitation, 100(7), 656. https://doi.org/10.1097/PHM.0000000000001603
Årnes, A. P., Nielsen, C. S., Stubhaug, A., Fjeld, M. K., Johansen, A., Morseth, B., Strand, B. H., Wilsgaard, T., & Steingrímsdóttir, Ó. A. (2023). Longitudinal relationships between habitual physical activity and pain tolerance in the general population. PLOS ONE, 18(5), e0285041. https://doi.org/10.1371/journal.pone.0285041
Bull, F. C., Maslin, T. S., & Armstrong, T. (2009). Global Physical Activity Questionnaire (GPAQ): Nine Country Reliability and Validity Study. Journal of Physical Activity and Health, 6(6), 790-804. https://doi.org/10.1123/jpah.6.6.790
Butcher, N. J., Monsour, A., Mew, E. J., Chan, A.-W., Moher, D., Mayo-Wilson, E., Terwee, C. B., Chee-A-Tow, A., Baba, A., Gavin, F., Grimshaw, J. M., Kelly, L. E., Saeed, L., Thabane, L., Askie, L., Smith, M., Farid-Kapadia, M., Williamson, P. R., Szatmari, P., … Offringa, M. (2022). Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA, 328(22), 2252-2264. https://doi.org/10.1001/jama.2022.21022
Chesterton, L. S., Barlas, P., Foster, N. E., Baxter, D. G., & Wright, C. C. (2003). Gender differences in pressure pain threshold in healthy humans. Pain, 101(3), 259-266. https://doi.org/10.1016/S0304-3959(02)00330-5
Chesterton, L. S., Sim, J., Wright, C. C., & Foster, N. E. (2007). Interrater Reliability of Algometry in Measuring Pressure Pain Thresholds in Healthy Humans, Using Multiple Raters. The Clinical Journal of Pain, 23(9), 760-766. https://doi.org/10.1097/AJP.0b013e318154b6ae
De Asís-Fernández, F., Sereno, D., Turner, A. P., González-Mohíno, F., & González-Ravé, J. M. (2022). Effects of apnoea training on aerobic and anaerobic performance: A systematic review and meta-analysis. Frontiers in Physiology, 13. https://www.frontiersin.org/articles/10.3389/fphys.2022.964144
Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
Fischer, A. A. (1987). Pressure algometry over normal muscles. Standard values, validity and reproducibility of pressure threshold. Pain, 30(1), 115-126. https://doi.org/10.1016/0304-3959(87)90089-3
Hackett, J., Naugle, K. E., & Naugle, K. M. (2020). The Decline of Endogenous Pain Modulation With Aging: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation. The Journal of Pain, 21(5-6), 514-528. https://doi.org/10.1016/j.jpain.2019.09.005
Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis | SpringerLink. https://link.springer.com/book/10.1007/978-3-319-19425-7
Hita-Contreras, F., Martínez-López, E., Latorre-Román, P. A., Garrido, F., Santos, M. A., & Martínez-Amat, A. (2014). Reliability and validity of the Spanish version of the Pittsburgh Sleep Quality Index (PSQI) in patients with fibromyalgia. Rheumatology International, 34(7), 929-936. https://doi.org/10.1007/s00296-014-2960-z
Hughes, L., & Patterson, S. D. (2020). The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. Journal of Applied Physiology, 128(4), 914-924. https://doi.org/10.1152/japplphysiol.00768.2019
Jeffries, O., Patterson, S. D., & Waldron, M. (2019). The effect of severe and moderate hypoxia on exercise at a fixed level of perceived exertion. European Journal of Applied Physiology, 119(5), 1213-1224. https://doi.org/10.1007/s00421-019-04111-y
Joshi, S., Mahoney, S., Jahan, J., Pitts, L., Hackney, K. J., & Jarajapu, Y. P. (2020). Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults. Journal of Applied Physiology, 128(5), 1423-1431. https://doi.org/10.1152/japplphysiol.00109.2020
Karanasios, S., Sozeri, A., Koumantakis, G. A., & Gioftsos, G. (2022). Exercised-Induced Hypoalgesia following An Elbow Flexion Low-Load Resistance Exercise with Blood Flow Restriction: A Sham-Controlled Randomized Trial in Healthy Adults. Healthcare, 10(12), 2557. https://doi.org/10.3390/healthcare10122557
Koltyn, K. F. (2002). Exercise-Induced Hypoalgesia and Intensity of Exercise. Sports Medicine, 32(8), 477-487. https://doi.org/10.2165/00007256-200232080-00001
Lahiri, S., Mokashi, A., Mulligan, E., & Nishino, T. (1981). Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. Journal of Applied Physiology, 51(1), 55-61. https://doi.org/10.1152/jappl.1981.51.1.55
Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and Statistical Psychology, 65(2), 350-370. https://doi.org/10.1111/j.2044-8317.2011.02029.
Leźnicka, K., Pawlak, M., Gasiorowska, A., Jażdżewska, A., Wilczyńska, D., Godlewska, P., Lubkowska, A., Chudecka, M., Maciejewska-Skrendo, A., Santos-Rocha, R., & Szumilewicz, A. (2022). Individual Characteristics and Pain Sensitivity during Pregnancy-A Cross-Sectional Study in Pregnant and Non-Pregnant Women. International Journal of Environmental Research and Public Health, 19(21), 14151. https://doi.org/10.3390/ijerph192114151
Mendoza-Arranz, C., López-Rebenaque, O., Cabrera-López, C. D., López-Mejías, A., Fierro-Marrero, J., & DeAsís-Fernández, F. (2024). Effects of Apnea-Induced Hypoxia on Hypoalgesia in Healthy Subjects. Sports, 12(11), 294. https://doi.org/10.3390/sports12110294
Pinheiro, J., Bates, D., & R Core Team. (1999). nlme: Linear and Nonlinear Mixed Effects Models (p. 3.1-165) [Dataset]. https://doi.org/10.32614/CRAN.package.nlme
Pinheiro, J. C., & Bates, D. M. (2013). Mixed-Effects Models in S and S-PLUS | SpringerLink. Recuperado 25 de junio de 2024, de https://link.springer.com/book/10.1007/b98882
Remor, E. (2006). Psychometric Properties of a European Spanish Version of the Perceived Stress Scale (PSS). The Spanish Journal of Psychology, 9(1), 86-93. https://doi.org/10.1017/S1138741600006004
Reyes del Paso, G. A., Muñoz Ladrón de Guevara, C., & Montoro, C. I. (2015). Breath-Holding During Exhalation as a Simple Manipulation to Reduce Pain Perception. Pain Medicine (Malden, Mass.), 16(9), 1835-1841. https://doi.org/10.1111/pme.12764
Shariat, A., Cleland, J. A., Danaee, M., Alizadeh, R., Sangelaji, B., Kargarfard, M., Ansari, N. N., Sepehr, F. H., & Tamrin, S. B. M. (2018). Borg CR-10 scale as a new approach to monitoring office exercise training. Work, 60(4), 549-554. https://doi.org/10.3233/WOR-182762
Sierra-Silvestre, E., Somerville, M., Bisset, L., & Coppieters, M. W. (2020). Altered pain processing in patients with type 1 and 2 diabetes: Systematic review and meta-analysis of pain detection thresholds and pain modulation mechanisms. BMJ Open Diabetes Research & Care, 8(1), e001566. https://doi.org/10.1136/bmjdrc-2020-001566
Staffe, A. T., Bech, M. W., Clemmensen, S. L. K., Nielsen, H. T., Larsen, D. B., & Petersen, K. K. (2019). Total sleep deprivation increases pain sensitivity, impairs conditioned pain modulation and facilitates temporal summation of pain in healthy participants. PloS One, 14(12), e0225849. https://doi.org/10.1371/journal.pone.0225849
Thompson, T., Oram, C., Correll, C. U., Tsermentseli, S., & Stubbs, B. (2017). Analgesic Effects of Alcohol: A Systematic Review and Meta-Analysis of Controlled Experimental Studies in Healthy Participants. The Journal of Pain, 18(5), 499-510. https://doi.org/10.1016/j.jpain.2016.11.009
Timmers, I., Kaas, A. L., Quaedflieg, C. W. E. M., Biggs, E. E., Smeets, T., & de Jong, J. R. (2018). Fear of pain and cortisol reactivity predict the strength of stress-induced hypoalgesia. European Journal of Pain (London, England), 22(7), 1291-1303. https://doi.org/10.1002/ejp.1217
Woorons, X. (2010). Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: Role of hypoxia and hypercapnia. Eur J Appl Physiol, 110(2), 367-377. https://doi.org/10.1007/s00421-010-1512-9 [doi]
Woorons, X., Bourdillon, N., Vandewalle, H., Lamberto, C., Mollard, P., Richalet, J.-P., & Pichon, A. (2010). Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration: Role of hypoxia and hypercapnia. European Journal of Applied Physiology, 110(2), 367-377. https://doi.org/10.1007/s00421-010-1512-9
Woorons, X., Dupuy, O., Mucci, P., Millet, G. P., & Pichon, A. (2019). Cerebral and Muscle Oxygenation during Repeated Shuttle Run Sprints with Hypoventilation. International Journal of Sports Medicine, 40(06), 376-384. https://doi.org/10.1055/a-0836-9011
Woorons, X., Mollard, P., Pichon, A., Duvallet, A., Richalet, J.-P., & Lamberto, C. (2007). Prolonged expiration down to residual volume leads to severe arterial hypoxemia in athletes during submaximal exercise. Respiratory Physiology & Neurobiology, 158(1), 75-82. https://doi.org/10.1016/j.resp.2007.02.017
Wright, D. B., London, K., & Field, A. P. (2011). Using Bootstrap Estimation and the Plug-in Principle for Clinical Psychology Data. Journal of Experimental Psychopathology, 2(2), 252-270. https://doi.org/10.5127/jep.013611
Zheng, K., Chen, C., Yang, S., & Wang, X. (2021). Aerobic Exercise Attenuates Pain Sensitivity: An Event-Related Potential Study. Frontiers in Neuroscience, 15, 735470. https://doi.org/10.3389/fnins.2021.735470